EISoft & Control Technology...

Battery powered wireless
telemetric systems
of BaWiIT series

Type series BaWiT- A/B/C/E

SPL ASM

Programming Language
User manual

Document version 1.1

Revision 1.10
Dated 18" of June 2014

1] gy
B Soft & Control Technology ... r y\ﬁ

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

Content
I o] o] €=V A o o BT 4
2 SPL ASM LANQUAQE. .. uuiiiieiieeeeii e ettt e ettt e e e et e e e e et s e e e et e e e eet s e e e e ta e e e eeta e e e aataseeeetanneaeenenns 5
B EVENTS DS CIIPTION e 6
I Yo TUT= T L= b rq=Tod UL (1) o PP 7
D LIMIEALIONS L.ttt 8
T RO Y= To [T = 1Y 1= PP 8
6 PreproCeSSOr COMIMEANTUSuuuuiiiiiiiiieiii bbb sesennnnes 9
0 2 O]\ PR 9
O O N O\ =1 | PR 9
B.3 HDEBUG ...ttt e et e a e e et et e et e e e e e e araba s 9
T]) R PP 10
ST 2 Y A 1Y PP 10
B.6 HINCLUDEo ettt e e e e e et ettt b e e e e e e e e ettt b e e e e e e e e eennbnaes 10
6.7 #STRING, #SHORTSTRING, #LONGSTRINGccotitiiiiiieiii ittt 10
B.8 HVALUEt e e e e e ettt e e e e e e e e a—n e e aeeearrr 11
A OTo] 11 0 01T o1 £SO 12
8 CONSTANT EXPIESSIONS ...t 13
O SOUICE FIlE STIUCTUI® ...ttt 14
9.1 LanguAge INSITUCTIONSccoiiiiiiiiiiieiie ettt 14
0. 0.0 ENDD ettt e e ettt e e e et e ettt e e e e e eetrena s 14
LS R I | T PSR 14
LS R0 0 0 PP 14
0.0 NP . e e e e et a e et e e et e e e e eeaaan s 14
.15 ENDC ..ttt e e et e e e et e ettt e e e e e earara s 14
9.1.6 EQ [INT | UINT | FLOAT] SICL, SIC2...uiiiiieiieeiiiiiees e e ee et s e e e e e e eeaatnaa s e e e e e e aannenans 14
9.1.7 NE [INT | UINT | FLOAT] SICL, SIC2.....uuuuuuuuuuuuuunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnsnnnnnsnnnnnnnnnnnnnes 14
Q.1.8LT [INT | UINT | FLOAT] SICL, SIC2...uuuuuuuuuuuuunuunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnssnnnssnnnnnnnnnnnnnns 14
Q.19 LE[INT | UINT | FLOAT] SICL, SIC2...uuiiiiiieiieeiiiiiees e e e et e e e e e e s e e e e e e aannen s 14
9.1.10 GT [INT | UINT | FLOAT] SICL, SIC2...uiii it ettt e e e et s e e e e e e eannen s 14
9.1.11 GE [INT | UINT | FLOAT] SICL, SIC2....uuuuuuuuuuuuunnns 14
.0, 12 ELSE ... ittt e e e e e e e a— e e e e e et e a— e e e e e e aarrrn s 14
S R It 1 3 A1 | PR 14
0. 1.1 TRUE ... ettt e e e e e e et ettt et e e e e e e e ee et e e e e e e e e eearen s 14
S LR = = (o 1= Y T 15
9.1.16 MOV [INT | UINT | FLOAT] DESt, SICL....coiieeiiiieiiii ettt e e e e 15
9.1.17 ADD [INT | UINT | FLOAT] DeSt, SICL, SIC2 ..vvvuuiiiieeeiiieeiiiiiiae e e eeeeeeeieiaas s e e e e e eeeenennnns 15
9.1.18 SUB [INT | UINT | FLOAT] D@eSt, SICL, SIC2uuuuuuuuuurnnnes 15
9.1.19 MUL [INT | UINT | FLOAT] DeSt, SICL, SIC2 ..ovvuuiiiiieeiiieeiiiieie e e e e e e eeetteae e e e e e e 15
9.1.20 DIV [INT | UINT | FLOAT] DeSt, SICL, SIC2....uuuuiiiiieeiiieiiiiieee e e e e et s e e e e e e eaaaaans 15
9.1.21 MOD [INT | UINT | FLOAT] DeSt, SICL, SIC2ciiiiieeiiieiiiiaaae e e e 15
9.1.22 AND [INT | UINT | FLOAT] DeSt, SICL, SIC2 ...euuuiiiieeeiieeeiiiiaee e e e 15
9.1.23 IOR [INT | UINT | FLOAT] DeSt, SICL, SIC2 ...ouvuiiiiieeiiieeiiieee e et e e e e e 15
9.1.24 XOR [INT | UINT | FLOAT] DeSt, SICL, SIC2uuiiiieeeiieeeiiiaaee e e 16
9.1.25 DIF [INT | UINT | FLOAT] DeSt, SICL, SIC2uuuuiiieeeaiieeeiiiaaee e e 16
9.1.26 MEQ [INT | UINT | FLOAT] DeSt, SICL, SIC2....uuuiiiiieeiiiiiiiiieie e ee e ettt e e e e e 16
9.1.27 MNE [INT | UINT | FLOAT] DeSt, SICL, SIC2....uuiiiiieeiiieiiiiieee e eee et e e e e 16
9.1.28 MGT [INT | UINT | FLOAT] DeSt, SICL, SIC2....uuiiiiieeiieeiiiiiaae e 16
9.1.29 MGE [INT | UINT | FLOAT] DeSt, SICL, SIC2....uuuiiiiieeiiiiiiiiiiee e e eeeeeeetiieae e e e e e 16
9.1.30 MLT [INT | UINT | FLOAT] DeSt, SICL, SIC2...uuuuuiiiiieeiiiiiiiiiiee e e eee et eeeeaaeanenns 16
9.1.31 MLE [INT | UINT | FLOAT] DeSt, SICL, SIC2uuiiiieeeiieeeiiieeee e 16
9. 1.32 IMP HADEI ... 16
ST L= 1] (] £ PPPUPT 17
O T =Ty 4 0T PP P PP PP PPUPPP 19

SPL ASM Programming Language — User manual r1.10 2

E Soft & Control Technology .. f \

Information, control, telemetric, metering and communication systems

SGS
Magnezitarska 10, 040 13 KosSice, Slovakia

0 7= o Yo o 1 o TP 21

12 EXBIMPIES ittt 22
D22 I @ To] 11 o oo 1o | PSSP 22
12.2 Measuring Of WEIGNT.........oooi e 24
R B €151V o = (O SPPPP 25

SPL ASM Programming Language — User manual r1.10

ES|
sl Soft & Control Technology ...

Information, control, telemetric, metering and communication systems

Magnezitarska 10, 040 13 KosSice, Slovakia

1 Abbreviations
SPL ASM - SCT PLCprogramming Language ASM.

EVENT - language event that is served by device.

Interpret - execute Bytecode instructions.

Compile - to create bytecode from source file.

ByteCode - coded instructions that can be interpreted by SPL interpreter in device.

SPL ASM Programming Language — User manual r1.10

SGS

B Soft & Control Technology i{’%‘

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

2 SPL ASM Language

SPL ASM language is a low-level programming language that can be used for writing event
handlers for BaWiT devices. Events are raised during data points processing, device service,
system resources activity or are generated directly by language instructions. SPL ASM compiler
generates BYTECODE from the source files. This BYTECODE is part of the configuration and is
interpreted by SPL ASM interpreter in BaWiT device.

SPL ASM Programming Language — User manual r1.10 5

E Soft & Control Technology .. i{’%‘

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

3 Events Description

Events are raised during data points processing:
e Reach or overrun of user data point bounds (analog and digitals)
¢ New measured values (can be equal to previous measured value)
¢ Changed value (change is determined by sensibility parameter in device configuration)
e Stabilized value (value is not changed in specified time)
System events:
e Device restart
e Change from SLEEP mode to RUN mode
e Modem turn on, modem failure, ...
Language events:
o Timer elapse
e Alarm
¢ Direct event raising

SPL ASM Programming Language — User manual r1.10 6

E Soft & Control Technology .. F%\

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

4 Language Execution

When the event is raised, it is queued for processing by interpreter. PowerManager allways
determines start of event execution (optimalization, etc.). Event is processed parallelly with all
other tasks defined by device configuration.

SPL ASM Programming Language — User manual r1.10 7

E Soft & Control Technology .. F%\

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

5 Limitations

The number of registers is limited to 8. The number of logical OR is max. 8. The number of inner if-
if-else-else conditions can be max. 8. The number of timers is 8. The number of alarms is 8.

5.1 Used Data Types

UINT — 32-bit unsigned integer
INT — 32-bit signed integer
FLOAT — 32-bit float (IEEE754)

SPL ASM Programming Language — User manual r1.10 8

[)
= Soft & Control Technology ... r

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

6 Preprocessor Commands

Although the described commands are labeled as preprocessor there is no classic preprocessor
(as in C language). Source file processing is not divided into preprocessor and compiler; there is
only the compiler that processes individual commands and instructions. As an instruction separator
in source files is used end-of-line character. Compiler is case insensitive.

6.1 #CONST

Defines constant that can be used in expressions. The value of constant must be computable

during compilation process.
#CONST constant = constexpression {, constant = constexpression }

Constant can be defined only outside the action body. Once defined constant can be redefined and
in next source file processing the new value is used. Constants are visible also outside the actual
source file (see # INCLUDE command).

Constant type is automatically determined from constant expression (uint, int, float, string).

Example:
#CONST i =1, j =1 + 1, k = -1
#CONST tlak = "FCGPA "

#CONST tlakl = tlak + "1", tlak2 = tlak + "2"
#CONST x = 3.5234, y = x + 1 + 0.5

In the example above the constant have these type:

i,] uint
k int
X,y float

tlak, tlakl, tlak2 string

6.2 #ACTION ... #END

Defines user action.

#ACTION ActionName EventId EventIndex
instructions

#END

ActionName — name of the action. EventId — event type. EventIndex — event index. As an
EventId and EventIndex user can use integer value or integer constant identifier.
Actions are visible outside the actual source file (see # INCLUDE).

6.3 #DEBUG

Turns on/off debug and break bit in instructions.
#DEBUG [ON | OFF] [BREAK]

Command can be used inside or outside the action body. By using the BrREAK parameter, the next
instruction will be generated with BREAK bit set. By using the parameters ON / orr all next
instructions will have the DEBUG bit set. Command's domain is only in actual source file.

In the example below the instructions Mov, app, D1V, MUL Will have DEBUG bit set to 1. Instruction
DIV will have also the BREAK set to 1. Instruction New and sus will have DEBUG and BREAK bits
set to 0. The using of #DEBUG without parameters is ignored by compiler.

Example:
NEW

#DEBUG ON
MOV CNT[O], 5

SPL ASM Programming Language — User manual r1.10 9

[)
=l Soft & Control Technology ... r

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

ADD CNT[O], CNT[O], CNT[1]
#DEBUG BREAK

DIV CNT[O], CNT[O], CNT[2]
MUL CNT[O], CNT[O], 2

#DEBUG OFF
SUB CNT[0], CNT[0], CNT[3]
6.4 #RESULT

Determines the default result type of instructions MOV, ADD, SUB, MUL, DIV, MOD, AND, IOR

and XOR, if the result is not explicitly stated.
#RESULT UINT | INT | FLOAT

Command can be used inside or outside the action body. In both cases it works as global setting.
Command domain is from its occurence till the next #REsuLT command or end of file.

6.5 #PARAM

Command is used for setting additional configuration parameters of action. If the command is used
outside the action body it affects all subsequent actions. If the command is used inside the action
body it affects current action and also all subsequent actions. Command domain is only in current
source file.

#PARAM name constexpression
Supported parameters (name) are LogDestination, LogNumber, LogSize. Constant
expression constexpression must be an integer.

6.6 #INCLUDE

Is used for insertion and subsequent processing of other source file from actually processed
source file.

#INCLUDE <filename>

In the included file are visible all defined constants and actions defined up to included file. After
finishing the included file processing in the actual source file will be visible all newly defined
constants (or redefined constants) and actions. The states of #DEBUG, #PARAM and #RESULT
commands are not transfered into actual source file.

The included file will be searched in system specified directories defined by compiler.
Example:

File A

#CONST X = 1 << MOC

#DEBUG ON

File B
#DEBUG OFF

#CONST MOC = 2

#INCLUDE <A>

#CONST ¥ = X - 1

In file B user can user constant x defined in file A from the # INCLUDE command. Command
#DEBUG ON does not affect file B, and respectively # DEBUG OFF does hot affect file A. In file A the

constant MOC is used that is not defined there, but is defined in file B before the processing of file
A.

6.7 #STRING, #SHORTSTRING, #LONGSTRING

Is used for texts definition, which are generated during source code compilation.
#STRING id, text

SPL ASM Programming Language — User manual r1.10 10

1] gy
B Soft & Control Technology ... r y\ﬁ

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

#SHORTSTRING id, text
#LONGSTRING id, text

For every directive compiler generates text with entered id, which is then stored in compiler's
output. As id user can enter any constant expression that evaluates to non-negative integer. As
text user can enter any constant expression that evaluates to string.

Directive #SHORTSTRING defines that final text can be max. 8 characters long. Similarly for
directive # LONGSTRING text can be max. 64 characters long. Directive #STRING defines that
length of final text is determined by compiler (allways short text, allways long text or determined
automatically).

6.8 #VALUE

Is used for values definition, which are generated during source code compilation and are stored in
device configuration.

#VALUE id, ident = (UINT | INT | FLOAT) value

For every directive compiler generates text with entered id, which is then stored in compiler's
output. As id user can enter any constant expression that evaluates to non-negative integer. As
value user can also enter any constant expression. For every value user must explicitly define
type of value which will be used for storage in configuration.

SPL ASM Programming Language — User manual r1.10 11

B Soft & Control Technology m

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

7 Comments

Semicolon character (;), or double angle bracket characters (/ /) are used for writing comments.
Every character after semicolon or double angle bracket to the end of the row is ignored by the
compiler.

SPL ASM Programming Language — User manual r1.10 12

1 oy
S5 Soft & Control Technology ... r y\ﬁ

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

8 Constant Expressions

Constant expressions are the expressions that can be computed already in the time of the source
file compilation. They are created out of defined constants (#CONST) or straightly out of input
numerical values. It is possible to use following operators in the constant expressions:

+ - =, Addition, Substraction, Multiplication, and Division.

N Integer division and remainder after the integer division.
& |~ Bitwise AND, bitwise OR, and exclusive bitwise OR.
~ Bit negation.

<< >> Bit left shift and right shift.

Operators + - | have lesser priority than the other operators. Operators with the same priority are
processed in the order as they occurred in the expression. The order of the operators processing
can be determined with the use of brackets ().

In constant expressions user can also use following functions:

DT (datetime)

Converts entered date and time datetime to integer value (number of seconds from 1% January
2000 00:00:00). Parameter datetime must be of type string and must be entered in following
format: yyyy-mm-dd hh:mm:ss. User can omit date or time part. If user omits date part, compiler
will use date 1% January 2000. If user omits time part, compiler will use 00:00:00.

SPL ASM Programming Language — User manual r1.10 13

S5 Soft & Control Technology ... r \3

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

9 Source File Structure

Source file consists of constant definition and single actions. Body of the action can contain several
instructions.

9.1 Language Instructions

9.1.1 END
Unconditional end of the action code execution.

9.1.2 NEWIF
Beginning of the new condition.

9.1.30R
Logical Or.

9.1.4 NOP
No operation.

9.1.5 ENDC
Conditional end of the action code execution.

9.1.6 EQ [INT | UINT | FLOAT] Src1l, Src2
Operand comparison (Srcl = Src2). A register or constant expression can be used as Src.

9.1.7 NE [INT | UINT | FLOAT] Srcl, Src2
Operand comparison (Srcl <> Src2). A register or constant expression can be used as Src.

9.1.8 LT [INT | UINT | FLOAT] Src1, Src2
Operand comparison (Srcl < Src2). A register or constant expression can be used as Src.

9.1.9 LE [INT | UINT | FLOAT] Src1l, Src2
Operand comparison (Srcl <= Src2). A register or constant expression can be used as Src.

9.1.10 GT [INT | UINT | FLOAT] Srcl, Src2
Operand comparison (Srcl > Src2). A register or constant expression can be used as Src.

9.1.11 GE [INT | UINT | FLOAT] Src1, Src2
Operand comparison (Srcl >= Src2). A register or constant expression can be used as Src.

9.1.12 ELSE
Beginning of the instructions that will be executed when the condition is not evaluated as true.

9.1.13 ENDIF
End of condition instructions.

9.1.14 TRUE
Allways true.

SPL ASM Programming Language — User manual r1.10 14

1 iy
S5 Soft & Control Technology ... r \‘

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

9.1.15 EE Ident Value

Raising event (action event handler) with the name Ident and parameter Value. Event handler is
not executed immediately; it is queued to the raised events queue, and it is waiting to be
processed.

9.1.16 MOV [INT | UINT | FLOAT] Dest, Srcl

It sets operand value Dest to the operand value Srcl. A register can be used as Dest; a register or
constant expression can be used as Src. If requested type of result is entered. If the requested
type of the result is specified, the resulting value will be saved with the specified type. Otherwise,
the instructions will be used based on the last command #RESULT.

9.1.17 ADD [INT | UINT | FLOAT] Dest, Src1, Src2

Counts up operand values Srcl and Src2, and saves the result into Dest. A register can be used
as Dest; a register or a constant expression can be used as Src. If the requested type of the result
is specified, the resulting value will be saved with the specified type. Otherwise, the instructions will
be used based on the last command #RESULT.

9.1.18 SUB [INT | UINT | FLOAT] Dest, Srcl, Src2

Subtracts operand values Srcl and Src2, and saves the result into Dest. A register can be used as
Dest; a register or a constant expression can be used as Src. If the requested type of the result is
specified, the resulting value will be saved with the specified type. Otherwise, the instructions will
be used based on the last command #RESULT.

9.1.19 MUL [INT | UINT | FLOAT] Dest, Src1, Src2

Multiplies operand values Srcl and Src2, and saves the result into Dest. A register can be used as
Dest; a register or a constant expression can be used as Src. If the requested type of the result is
specified, the resulting value will be saved with the specified type. Otherwise, the instructions will
be used based on the last command #RESULT.

9.1.20 DIV [INT | UINT | FLOAT] Dest, Srcl, Src2

Divides operand values Srcl and Src2, and saves the result into Dest. A register can be used as
Dest; a register or a constant expression can be used as Src. If the requested type of the result is
specified, the resulting value will be saved with the specified type. Otherwise, the instructions will
be used based on the last command #RESULT.

9.1.21 MOD [INT | UINT | FLOAT] Dest, Src1, Src2

Saves the reminder after the deduction of Srcl by Src2 into Dest. A register can be used as Dest;
a register or a constant expression can be used as Src. If the requested type of the result is
specified, the resulting value will be saved with the specified type. Otherwise, the instructions will
be used based on the last command #RESULT.

9.1.22 AND [INT | UINT | FLOAT] Dest, Src1, Src2

Saves the result of bit multiplication of Src1 and Src2 into Dest. A register can be used as Dest;
a register or a constant expression can be used as Src. If the requested type of the result is
specified, the resulting value will be saved with the specified type. Otherwise, the instructions will
be used based on the last command #RESULT.

9.1.23 IOR [INT | UINT | FLOAT] Dest, Src1, Src2

Saves the result of bitwise-or of Srcl and Src2 into Dest. A register can be used as Dest; a register
or a constant expression can be used as Src. If the requested type of the result is specified, the
resulting value will be saved with the specified type. Otherwise, the instructions will be used based
on the last command #RESULT.

SPL ASM Programming Language — User manual r1.10 15

1 iy
S5 Soft & Control Technology ... r \‘

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

9.1.24 XOR [INT | UINT | FLOAT] Dest, Src1, Src2

Saves the result of exlusive bitwise-or of Src1l and Src2 into Dest. A register can be used as Dest;
a register or a constant expression can be used as Src. If the requested type of the result is
specified, the resulting value will be saved with the specified type. Otherwise, the instructions will
be used based on the last command #RESULT.

9.1.25 DIF [INT | UINT | FLOAT] Dest, Src1, Src2

Subtracts operand values Srcl and Src2, and saves the absolute value of the result into Dest.
A register can be used as Dest; a register or a constant expression can be used as Src. If the
requested type of the result is specified, the resulting value will be saved with the specified type.
Otherwise, the instructions will be used based on the last command #RESULT.

9.1.26 MEQ [INT | UINT | FLOAT] Dest, Src1l, Src2

Saves the result of expression Src1==Src2 into Dest. A register can be used as Dest; a register or
a constant expression can be used as Src. If the requested type of the result is specified, the
resulting value will be saved with the specified type. Otherwise, the instructions will be used based
on the last command #RESULT.

9.1.27 MNE [INT | UINT | FLOAT] Dest, Srcl, Src2

Saves the result of expression Src1!=Src2 into Dest. A register can be used as Dest; a register or
a constant expression can be used as Src. If the requested type of the result is specified, the
resulting value will be saved with the specified type. Otherwise, the instructions will be used based
on the last command #RESULT.

9.1.28 MGT [INT | UINT | FLOAT] Dest, Srcl, Src2

Saves the result of expression Src1>Src2 into Dest. A register can be used as Dest; a register or a
constant expression can be used as Src. If the requested type of the result is specified, the
resulting value will be saved with the specified type. Otherwise, the instructions will be used based
on the last command #RESULT.

9.1.29 MGE [INT | UINT | FLOAT] Dest, Srcl, Src2

Saves the result of expression Src1>=Src2 into Dest. A register can be used as Dest; a register or
a constant expression can be used as Src. If the requested type of the result is specified, the
resulting value will be saved with the specified type. Otherwise, the instructions will be used based
on the last command #RESULT.

9.1.30 MLT [INT | UINT | FLOAT] Dest, Src1, Src2

Saves the result of expression Src1<Src2 into Dest. A register can be used as Dest; a register or a
constant expression can be used as Src. If the requested type of the result is specified, the
resulting value will be saved with the specified type. Otherwise, the instructions will be used based
on the last command #RESULT.

9.1.31 MLE [INT | UINT | FLOAT] Dest, Src1, Src2

Saves the result of expression Src1<=Src2 into Dest. A register can be used as Dest; a register or
a constant expression can be used as Src. If the requested type of the result is specified, the
resulting value will be saved with the specified type. Otherwise, the instructions will be used based
on the last command #RESULT.

9.1.32 JMP label

Jumps to the the labeled instruction. Jumps are possible only within one action. In two different

actions, it is possible to label the jump place identically. Instruction JMP will be translated as
MOV UINT STS[0], absolute offset

SPL ASM Programming Language — User manual r1.10 16

S5 Soft & Control Technology ... 'fﬂ\\z\

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

Value absolute offset will be calculated by the compiler. At the moment, no instruction for
relative offset jump exists. It is necessary to use ADD UINT STS[0], STS[O0],

relative offset.

In the example, the instruction JMP makes jump to instruction ADD.

JMP example:
MOV CNT[0], DP[O] // sets Counter0 to the value of data point addr. O
someplace: // label

ADD CNT[O], CNT[O], 5 // Adds 5 to Counter0
MUL CNT[O], CNT[O0], 2 // Multiplies Counter0O by constant 2

NEW // New condition

LT CNT[O], 100 // Test if Counter0 is less than 100

JMP miesto // Jump to someplace

NEW

MOV DP[0], CNT[O] // Sets data point addr.0 value to Counter0

9.2 Registers

NO No operand. Implicitly evaluated as UINT 0.
Wlconst] Temporary action registers.
const — integer constant expression
DP[addr] Valus of data points.
DP[shortname] addr — 2-byte data point address (integer constant

expression)
shortname — shortened label of the data point (string
or string constant identifier)

DP[addr] .constident Configuration values of data points.

DP[shortname] .constident addr — 2-byte address of data point (integer constant
expression)
shortname — shortened label of the data point (string
or string constant identifier)
constident — parameter identification number of data
point configuration item (positive integer or integer
constant identifier)

e 0-ownvalue

e 1-SCTtime
e 2 —Quality Descriptor
e Other — data point parameters based on the
numeration
CFG[area,item index,parameter] Value of configuration table parameter inthe area
and the item with the number item index.

area — configuration area identification number (integer
constant expression)

e 1-Objects
e 2 —Slave devices
e FEtc.

item index — item serial number in the configuration

(integer constant expression)

parameter — parameter identification number in the

configuration (integer or integer constant identifier)
STS[table,item,parameter] Value of parameter of the state table with id number

SPL ASM Programming Language — User manual r1.10 17

B Soft & Control Technology F%\

SGS

Information, control, telemetric, metering and communication systems
Magnezitarska 10, 040 13 KosSice, Slovakia

table in the item with id number item.

table — state table identification number (integer
constant expression)

1tem — identification number of the item in the state
table (integer constant expression)

parameter — identification number of the parameter in
the configuration (integer or integer constant identifier)

CNT[const] Counter.
CTC[const] Timer.
ALR[const] Alarm.

Only constant expressions must be used as indexes for access to the actual register values (that
is, they must be computable in the time of compilation).

SPL ASM Programming Language — User manual r1.10 18

B Soft & Control Technology f |

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

10 Grammar

Grammar is of LL(1) type and is written in slightly modified EBNF. Starting non-terminal of grammar
iS SPLAsmM.

EOLN = '"\n' | "\r'
Sign = "4m | v
Digit = "o".."9"
HexDigit = "0".."9" | "A".."F" | "a".."f"
Letter =" " | "A".."Z" | "a".."z"
Exponent = "E" | "e"
noQuote = ANY - '"' - EOLN
noAngleBr = ANY - '<' - '>' - EOLN
ident = Letter { Letter | Digit }
integer = (Digit { Digit }) | ("Ox" HexDigit {HexDigit})
real = [Digit { Digit }] "." Digit { Digit } [Exponent [Sign] Digit { Digit }]
string = '"" { noQuote | '"\"' } '™
angleStr = '<' { noAngleBr } '>'
SPLAsm = { Block } EOF
Comment = (";" | "//") {ANY}
Block = [ConstStmt | ValueStmt | StringStmt | ActionStmt | DebugStmt | ResultStmt | ParamStmt |
IncludeStmt] [Comment] EOLN
ConstStmt = "#CONST" ConstDecl { "," ConstDecl }
ConstDecl = ident "=" ConstExpr
ConstExpr = ConstTerm { ("+" | "=-" | "[|") ConstTerm }
ConstTerm = ConstFactor { ("*" | "/"™ | "g" | "g" | "A" | "<<" | ">>") ConstFactor }
ConstFactor = ident | integer | real | string | "DT" " (" ConstExpr ")" |
(" (" ConstExpr ")") ("~" ConstFactor) « ("+" "-") ConstFactor

ValueStmt = "#VALUE" ConstExpr , ident = ResultType ConstExpr
StringStmt = ("#STRING" | "#SHORTSTRING" | "#LONGSTRING") ConstExpr "," ConstExpr
ResultStmt = "#RESULT" ResultType
ResultType = "UINT" | "INT" | "FLOAT"
DebugStmt = "#DEBUG" ["ON" | "OFF"] ["BREAK"]
ParamStmt = "#PARAM" ident ConstExpr
IncludeStmt = "#INCLUDE" angleStr
ActionStmt = "#ACTION" ActionHeader { Command } "#END"
ActionHeader = ident (ident | integer) (ident | integer) [Comment] EOLN
Command = [(ident ":") | Instruction | DebugStmt | ResultStmt | ParamStmt] [Comment] EOLN
Instruction = "END" | "NEWIF" | "OR" | "ELSE" | "TRUE"

| ¢ ("EQ™ | "NE" | "LT" | "LE" | "GT" | "GE") [ResultType] Operand "," Operand)

| "NOP" | "ENDC"

| ("EE" ident Operand)

| ("MOV" [ResultType] DestOperand "," Operand)

(("ADD" "SUB" "MUL" "DIV" "MOD" "AND" "IOR" "XOR"
| "DIF" | "MEQ" | "MNE" | "MGT" | "MGE" | "MLT" | "MLE")

[ResultType] DestOperand "," Operand "," Operand)

SPL ASM Programming Language — User manual r1.10 19

ES|
mall Soft & Control Technology ...

Information, control, telemetric, metering and communication systems
Magnezitarska 10, 040 13 KosSice, Slovakia

| ("JMP" ident)

Operand = DestOperand | ConstExpr .

DestOperand RegisterDP | RegisterCFG | RegisterSTS | RegisterOther
RegisterArray = "[" ConstExpr "," ConstExpr "," ConstExpr "]"
RegisterDP = "DP" "[" ConstExpr "]" ["." (ident | integer)]
RegisterCFG = "CFG" RegisterArray .

RegisterSTS = "STS" RegisterArray .

RegisterOther = ("W" | "CNT" | "CTC" | "ALR") "[" ConstExpr "]"
RegisterNO = "NO"

| RegisterNO .

any character ANY

end of file EOF

non-terminal definition =

or |

optional [...1]
repetition >= 0 (...}

group (...)
terminal
rule end

interval / set

exclusion -

Tab. 1 Character meanings used in EBNF

SPL ASM Programming Language — User manual r1.10

SGS

20

E Soft & Control Technology .. m

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

11 Debugging

For each instruction it is possible to turn on whether the given instruction participates in detail
debug output. When executing user event, the file is generated in directory 0:/SPL of BaWiT file
system with the name splABDC.log. ABCD contains hexadecimal number of user defined event.
Listing is as follows:

SPL Run Action ID=1 DT=2009-09-04 10:07:27 BRK=0 STS=0 Name=ZmenaPoctuBatt

Event=48, Index=44, Param=1
SPL INS: EXE MOV DEBUG CndTst=1 ExeTst=1 Run=l1
DST: W[3].F=1.000000
SRC1:DP[A=1,0=0,T=0,B=0,I=0].F=1.000000 Text=batts VelID=5 <Batts>
SRC2:NO.F=0.000000

W: [0]l=unk [1]=unk [2]=unk [3]=1.000000 [4]=unk [5]=unk [6]=unk [7]=unk
CNT: [O]=unk [1]=unk [2]=unk [3]=unk [4]=unk [5]=unk [6]=unk [7]=unk
CTC: [0]=0 [1]=0 [2]=0 [3]=0 [4]1=0 [5]=0 [6]1=0 [7]=0
ALR: [0]=0 U [1]=0 U [2]=0 U [3]=0 U [4]=0 U [5]=0 U [6]=0 U [7]=0 U
T: [0]=x01.0

SPL INS: EXE DIV DEBUG CndTst=1 ExeTst=1 Run=l1
DST: W[3].F=0.010000
SRC1:W[3].F=1.000000
SRC2:CONS.F=100.000000

W: [0]=unk [1l]=unk [2]=unk [3]=0.010000 [4]=unk [5]=unk [6]=unk [7]=unk
CNT: [0O]=unk [1l]=unk [2]=unk [3]=unk [4]=unk [5]=unk [6]=unk [7]=unk
CTC: [0]=0 [1]1=0 [2]=0 [3]=0 [4]1=0 [5]=0 [6]1=0 [7]1=0
ALR: [0]1=0 U [1]=0 U [2]=0 U [3]=0 U [4]=0 U [5]=0 U [6]=0 U [7]=0 U
T: [0]=x01.0

SPL INS: EXE MOV DEBUG CndTst=1 ExeTst=1 Run=l1
DST: DP[A=1,0=0,T=1,B=0,I=0].F=0.010000 Text=ndb VelID=12 <NDB>
SRC1:W[3].F=0.010000
SRC2:NO.F=0.000000

W: [0]=unk [1l]=unk [2]=unk [3]=0.010000 [4]=unk [5]=unk [6]=unk [7]=unk
CNT: [O]=unk [1]=unk [2]=unk [3]=unk [4]=unk [5]=unk [6]=unk [7]=unk
CTC: [0]=0 [11=0 [2]=0 [3]1=0 [41=0 [5]1=0 [6]1=0 [7]1=0
ALR: [0]1=0 U [1]1=0 U [2]=0 U [3]=0 U [4]=0 U [5]1=0 U [6]=0 U [7]=0 U
T: [0]=x01.0

SPL action Time=1709msec

If the logging is disabled, only record of user event execution is stored:
SPL Run Action ID=0 DT=2009-09-02 14:39:58 BRK=0 STS=0 Name=Reset

Event=16, Index=1, Param=0

SPL action Time=0Omsec

SPL ASM Programming Language — User manual r1.10 21

B Soft & Control Technology ... r \3

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

12 Examples

12.1 Cooling control

Layout

Supervise user set temperature limit. When exceeding limit turn cooling fan, control fan activity and
indicate cooling error after each fan start (at latest 5 seconds since start).

Description of technical solution

Temperature measuring by PT1000 on analog input 0. Activity of cooling fan is indicated on digital
input 0. Fan is switched by digital output 0. Error indication is on digital output 1.

Configuration description

Configuration must have correctly configured 4 data points according to technical description of the
solution. It is necessary to set following parameters of device configuration for correct operation
according to layout:

e Data point for actual temperature
o must have the same signature (for example Temperature) as in the source program
(see bellow)
o set condition of user event generating to New value
o index of user event within range 0..65535 set by user (for example 160 — when
measuring new value of data point the event with set number 160 will be generated)
o correctly set high limit (based on user requirements)
¢ Data point to indicate fan operation
o must have the same signature (for example CoolRun) as in the source program
(see bellow)
e Data point for cooling error indication
o must have the same signature (for example CoolErr) as in the source program (see
bellow)
e Data point for controlling of fan operation
o Must have the same signature (for example Cooler) as in the source program (see
bellow)

Solution description

Temperature measurement is running based on user configured time diagram for analog input (see
configuration on CD). When reading new value the event is generated. Servicing of this event will
compare if actual temperature is higher or equal to configured high limit of this data point. When
meeting the criteria the value of data point Cooler will be set to 1 and this will turn on the fan. In
the same time this state will be registered in internal language register. Finally the timer will start
and after 5 seconds invoke event to control cooling operation. In case that the temperature is not
higher than configured limit, the value of data point Cooler to 0O (turns off the fan). This state will be
again registered in register and executes timer for cooling operation control.

After elapsing time for cooling control the event is generated. This event will control if the
registered state in internal register is equal to value of data point CoolRun (indication, cooling
on/off). If the condition is fulfilled, the value O will be registered to data point CoolErr (error is not
indicated). In case that condition is not fulfilled the error is indicated (value 1 on data point
CoolErr) and in the same time it will again starts the time for further cooling control.

Program
// file with device system constants

#INCLUDE <system.spi>
// constants

#CONST TurnOn = 1
#CONST TurnOff = 0

SPL ASM Programming Language — User manual r1.10 22

E Soft & Control Technology ... ¢ ‘

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KoSice, Slovakia

// datapoint names constants
#CONST Temperature = "Temper"
#CONST Cooler = "Cooler"
#CONST CoolerRun = "CoolRun"
#CONST CoolerError = "CoolErr"

// constant for register id
#CONST CoolerId = 0

// no debug information

#DEBUG OFF

#ACTION AfterResetEvent Action_SYS Action_SYS RST
// device "Reset" handler

#END

// debug information on
#DEBUG ON
// ID debug log
#PARAM LogNumber 160
// maximum debug log size
#PARAM LogSize 4096
// new data point value event handler
#ACTION NewTemperature Action DP_NEW 160
// test, if the value of data point Teplota higher or equal
// to high limit of data point Temperature
GE FLOAT DP|[Temperature], DP[Temperature].cfgUserHI
// registering value of constant Zapnut to data point
MOV FLOAT DP[Cooler], TurnOn
// registering value of constant Zapnut to register of interpreter W
MOV W[CoolerId], TurnOn
// setinng timer to 5 seconds
MOV CTC[CoolerId], 5
// 1if the test was false (Teplota is lower than high limit)
ELSE
// set value of constant TurnOff to data point
MOV FLOAT DP[Cooler], TurnOff
// register value of constant Vypnut to interpreter W register
MOV W[CoolerId], TurnOff
// setting timer to 5 seconds
MOV CTC[CoolerId], 5
// end condition (does not have to be, because the action finishes)
ENDIF
#END

#PARAM LogNumber CoolerId
#PARAM LogSize 2048
// servicing of event after elapsing timer CoolerId
#ACTION CoolingTest Action_ CTC CoolerId
// test, if the value of CoolerId register is equal to value of data point
CoolerRun
EQ FLOAT W([CoolerId], DP[CoolerRun]
// registers value TurnOff to data point CoolerError
MOV FLOAT DP[CoolerError], TurnOff
// 1f the test was false
ELSE
// registers constant TurnOn value to data point CoolerError
MOV FLOAT DP[CoolerError], TurnOn
// setting timer CoolerId to 1 second
MOV CTC[CoolerId], 1
// end of condition (does not have to, because the action finishes)
ENDIF

SPL ASM Programming Language — User manual r1.10 23

1 oy
S5 Soft & Control Technology ... r y\ﬁ

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

#END

Notes

Whole example with complete configuration is available on istallation CD for application K2config
in directory Examples\Ex1.

12.2 Measuring of weight

Layout

Based on measured weight it is needed to set value of current loop 4-20 mA according to hardware
limits of weight sensor.

Technical solution description

Weight measuring by Tensometric Bridge on analog input O.

Configuration description

Configuration must have 2 correctly configured data points based on layout and technical solution
description. It is necessary to set following parameters of device configuration for correct operation
according to layout:

¢ Data point for actual weight
o Must have the same signature (for example Weight) as in the source program (see
bellow)
o set condition of user event generating to New value
o index of user event within range 0..65535 set by user (for example 150 — when
measuring new value of data point the event with set number 150 will be generated)
o correctly set low limit (based on user requirements)
o correctly set high limit (based on user requirements)
e Data point for corrected weight value
o must have the same signature (for example AOUT) as in the source program (see
bellow)
o correctly set low limit (based on user requirements)
o correctly set high limit (based on user requirements)

Solution description

Weight measuring is running based on user configured time diagram for analog input. When
reading new value the event is generated. Servicing of this event will calculate new value of data
point AOUT based on set low and high limits of data points Weight and AOUT by linear
transformation.

Program

// file containing device system constants

#$INCLUDE <system.spi>

// constants for marking the data points in configuration
#CONST Weight = "Weight"
#CONST WeightOut = "AOUT"

// enabling debug information for all next actions
#DEBUG ON
// debug log ID
#PARAM LogNumber 150
// maximal size of debug log
#PARAM LogSize 4096
#ACTION NewWeight Action DP NEW 150
// calculation of coefficients for linear tran
/) ko= (y2-y1) / (x2-x1)
SUB FLOAT W[0], DP[WeightOut].cfgHwMax, DP[WeightOut].cfgHwMin
SUB FLOAT W[1l], DP[Weight].cfgHwMax, DP[Weight].cfgHwMin
// k = W[0]
DIV FLOAT W([O0], W[O], WI[1]

formation

0]

/// q = Ay’l - k * x1

SPL ASM Programming Language — User manual r1.10 24

1] gy
S5 Soft & Control Technology ... r y\ﬁ

Information, control, telemetric, metering and communication systems SGS

Magnezitarska 10, 040 13 KosSice, Slovakia

MUL FLOAT W[1], W[0], DP[Weight].cfgHwMin
// g = W[1]

SUB FLOAT W[1l], DP[WeightOut].cfgHwMin, WI[1]

//// y = k*x + g
MUL FLOAT W([2], W[0], DP[Weight]
ADD FLOAT W[2], W[2], W[1]
// new value is set to data point - calculated value y = W[2
MOV FLOAT DP[WeightOut], W[2]
#END

Notes
Whole example with complete configuration is available on istallation CD for application K2config
in directory Examples\Ex2.

12.3 GSM gate

Layout

Allow to multiple users control opening/closing a gate. If configured user rings through, this will
execute sequence of gate opening. It is requested to automatically close the gate after 2 minutes,
if it is still opened.

Technical solution description

Gate controlling is connected to digital output 0. Position switch of gate closing is connected to
digital input O.

Configuration description

Configuration must have 2 correctly configured data points based on layout and technical solution
description. It is necessary to set following parameters of device configuration for correct operation
according to layout:

¢ Data point of position switch for closing the gate
o Must have the same signature (for example GateSt) as in the source program (see
bellow)
o set condition of user event generating to Changed value
o index of user event within range 0..65535 set by user (for example 200 — when
measuring new value of data point the event with set number 200 will be generated)
e Data point for gate controlling
o Must have the same signature (for example Gatelm) as in the source program (see
below)

Solution description

Sequence of gate opening is executed by ring through event and verifying the user. Servicing will
set impulse on data point Gatelm to 1 and starts 1 second timer. After elapsing time service of
timer will set impulse on data point Gatelm to 0.

Each change of data point GateSt value will verifies if value of data point GateSt is equal 0 (gate is
opened). In case of equal the 2 minute countdown will be started (by timer). After elapsing the
given time will be again generated impulse on data point Gatelm for 1 second.

Program

// file containing device sy
#INCLUDE <system.spi>

tem constant

)]
)]
)]

#PARAM LogSize 16384

0
1

#CONST Opened
#CONST Closed

// constants for marking the data points in configuration
#CONST GateImpulse = "GateIm"
#CONST GateState = "GateSt"

// constants for timers

SPL ASM Programming Language — User manual r1.10 25

ES|
mall Soft & Control Technology ...

Information, control, telemetric, metering and communication systems

Magnezitarska 10, 040 13 KosSice, Slovakia

#CONST GateImpulseWait = 0
#CONST GateOpened = 1

// timeout for how long the gate have to be opened (in sec)
#CONST GateOpenedTimeout = 10

#DEBUG ON
// servicing event when calling and verifying user number
#ACTION User Action USR Action_ USR_PHONEOK
// set impulse

MOV FLOAT DP[GateImpulse], 1

// start timer GatelImpulseWait

MOV CTC[GateImpulseWait], 1
#END

// service of timer GatelImpulseWait

#ACTION TimerGateOpen Action CTC GateImpulseWait
// drop impulse
MOV FLOAT DP[GateImpulse], O

#END

// service of data point new value event
#ACTION GateStateChanged Action DP_SENSE 200
// 1f the gate is opened
EQ FLOAT DP[GateState], Opened
// start 2 minutes countdown
MOV CTC[GateOpened], GateOpenedTimeout
// end of condition (not necessary)
ENDIF
#END

// service of casovaca GateOpened
#ACTION TimerGateOpened Action CTC GateOpened
// 1f the gate is opened
EQ FLOAT DP[GateState], Opened
// set impulse
MOV FLOAT DP[GateImpulse], 1
// start timer GateImpulselait
MOV CTC[GatelImpulseWait], 1
// end of condition (not necessary)
ENDIF
#END

Notes

SGS

Whole example with complete configuration is available on istallation CD for application K2config

in directory Examples\Ex3.

SPL ASM Programming Language — User manual r1.10

26

	1 Abbreviations
	2 SPL ASM Language
	3 Events Description
	4 Language Execution
	5 Limitations
	5.1 Used Data Types

	6 Preprocessor Commands
	6.1 #CONST
	6.2 #ACTION … #END
	6.3 #DEBUG
	6.4 #RESULT
	6.5 #PARAM
	6.6 #INCLUDE
	6.7 #STRING, #SHORTSTRING, #LONGSTRING
	6.8 #VALUE

	7 Comments
	8 Constant Expressions
	9 Source File Structure
	9.1 Language Instructions
	9.1.1 END
	9.1.2 NEWIF
	9.1.3 OR
	9.1.4 NOP
	9.1.5 ENDC
	9.1.6 EQ [INT | UINT | FLOAT] Src1, Src2
	9.1.7 NE [INT | UINT | FLOAT] Src1, Src2
	9.1.8 LT [INT | UINT | FLOAT] Src1, Src2
	9.1.9 LE [INT | UINT | FLOAT] Src1, Src2
	9.1.10 GT [INT | UINT | FLOAT] Src1, Src2
	9.1.11 GE [INT | UINT | FLOAT] Src1, Src2
	9.1.12 ELSE
	9.1.13 ENDIF
	9.1.14 TRUE
	9.1.15 EE Ident Value
	9.1.16 MOV [INT | UINT | FLOAT] Dest, Src1
	9.1.17 ADD [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.18 SUB [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.19 MUL [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.20 DIV [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.21 MOD [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.22 AND [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.23 IOR [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.24 XOR [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.25 DIF [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.26 MEQ [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.27 MNE [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.28 MGT [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.29 MGE [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.30 MLT [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.31 MLE [INT | UINT | FLOAT] Dest, Src1, Src2
	9.1.32 JMP label

	9.2 Registers

	10 Grammar
	11 Debugging
	12 Examples
	12.1 Cooling control
	12.2 Measuring of weight
	12.3 GSM gate

